Перевод: со всех языков на все языки

со всех языков на все языки

Biographical Memoirs of Fellows of the Royal Society

  • 1 Tizard, Sir Henry Thoms

    SUBJECT AREA: Weapons and armour
    [br]
    b. 23 August 1885 Gillingham, Kent, England
    d. 9 October 1959 Fareham, Hampshire, England
    [br]
    English scientist and administrator who made many contributions to military technology.
    [br]
    Educated at Westminster College, in 1904 Tizard went to Magdalen College, Oxford, gaining Firsts in mathematics and chemistry. After a period of time in Berlin with Nernst, he joined the Royal Institution in 1909 to study the colour changes of indicators. From 1911 until 1914 he was a tutorial Fellow of Oriel College, Oxford, but with the outbreak of the First World War he joined first the Royal Garrison Artillery, then, in 1915, the newly formed Royal Flying Corps, to work on the development of bomb-sights. Successively in charge of testing aircraft, a lieutenant-colonel in the Ministry of Munitions and Assistant Controller of Research and Experiments for the Royal Air Force, he returned to Oxford in 1919 and the following year became Reader in Chemical Thermodynamics; at this stage he developed the use of toluene as an air-craft-fuel additive.
    In 1922 he was appointed an assistant secretary at the government Department of Industrial and Scientific Research, becoming Principal Assistant Secretary in 1922 and its Permanent Director in 1927; during this time he was also a member of the Aeronautical Research Committee, being Chairman of the latter in 1933–43. From 1929 to 1942 he was Rector of Imperial College. In 1932 he was also appointed Chairman of a committee set up to investigate possible national air-defence systems, and it was largely due to his efforts that the radar proposals of Watson-Watt were taken up and an effective system made operational before the outbreak of the Second World War. He was also involved in various other government activities aimed at applying technology to the war effort, including the dam-buster and atomic bombs.
    President of Magdalen College in 1942–7, he then returned again to Whitehall, serving as Chairman of the Advisory Council on Scientific Policy and of the Defence Research Policy Committee. Finally, in 1952, he became Pro-Chan-cellor of Southampton University.
    [br]
    Principal Honours and Distinctions
    Air Force Cross 1918. CB 1927. KCB 1937. GCB 1949. American Medal of Merit 1947. FRS 1926. Ten British and Commonwealth University honorary doctorates. Hon. Fellowship of the Royal Aeronautical Society. Royal Society of Arts Gold Medal. Franklin Institute Gold Medal. President, British Association 1948. Trustee of the British Museum 1937–59.
    Bibliography
    1911, The sensitiveness of indicators', British Association Report (describes Tizard's work on colour changes in indicators).
    Further Reading
    KF

    Biographical history of technology > Tizard, Sir Henry Thoms

  • 2 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 3 Rawcliffe, Gordon Hindle

    SUBJECT AREA: Electricity
    [br]
    b. 2 June 1910 Sheffield, England
    d. 3 September 1979 Bristol, England
    [br]
    English scientist and inventor of the multi-speed induction motor using the pole amplitude modulation principle.
    [br]
    After graduating from Keble College, Oxford, Rawcliffe joined the Metropolitan Vickers Electrical Company in 1932 as a college apprentice, and later became a design engineer. This was followed by a period as a lecturer at Liverpool University, where he was able to extend his knowledge of the principles underlying the design and operation of electrical machines. In 1941 he became Head of the Electrical Engineering Department at the Robert Gordon Technical College, Aberdeen, and Lecturer in charge of Electrical Engineering at Aberdeen University. In 1944 Rawcliffe was appointed to the Chair of Electrical Engineering at the University of Bristol, where he remained until his retirement in 1975. The reputation of his department was enhanced by the colleagues he recruited.
    After 1954 he began research into polyphase windings, the basis of alternating-current machinery, and published papers concerned with the dual problems of frequency changing and pole changing. The result of this research was the discovery in 1957 of a technique for making squirrel-cage induction motors run at more than one speed. By reversing current in one part of the winding, the pole distribution and number were changed, and with it the speed of rotation.
    Rawcliffe's name became synonymous with pole amplitude modulation, or PAM, the name given to this technique. Described by Rawcliffe as a new philosophy of windings, the technique led to a series of research papers, patents and licensing agreements in addition to consultancies to advise on application problems. Commercial exploitation of the new idea throughout Western Europe, the United Kingdom and the United States followed. In total he contributed twentyfive papers to the Proceedings of the Institution of Electrical Engineers and some sixty British patent applications were filed.
    [br]
    Principal Honours and Distinctions
    FRS 1972. Royal Society S.G.Brown Medal 1978.
    Bibliography
    21 August 1958, British patent no. 900,600 (pole amplitude modulation).
    1958, with R.F.Burbridge and W.Fong, "Induction motor speed changing by pole amplitude modulation", Proceedings of the Institution of Electrical Engineers 105 (Part A): 411–19 (the first description of pole amplitude modulation).
    Further Reading
    Biographical Memoirs of Fellows of the Royal Society, 1981, Vol. XXVII, London, pp. 479–503 (includes lists of Rawcliffe's patents and principal papers published).
    GW

    Biographical history of technology > Rawcliffe, Gordon Hindle

  • 4 Reason, Richard Edmund

    [br]
    b. 21 December 1903 Exeter, Devon, England
    d. 20 March 1987 Great Bowden, Leicestershire, England
    [br]
    English metrologist who developed instruments for measuring machined-surface roughness.
    [br]
    Richard Edmund Reason was educated at Tonbridge School and the Royal College of Science (Imperial College), where he studied under Professor A.F.C.Pollard, Professor of Technical Optics. After graduating in 1925 he joined Taylor, Taylor and Hobson Ltd, Leicester, manufacturers of optical, electrical and scientific instruments, and remained with that firm throughout his career. One of his first contributions was in the development, with E.F.Fincham, of the Fincham Coincidence Optometer. At this time the firm, under William Taylor, was mainly concerned with optical instruments and lens manufacture, but in the 1930s Reason was also engaged in developing means for measuring the roughness of machined surfaces. The need for establishing standards and methods of measurement of surface finish was called for when the subcontracting of aero-engine components became necessary during the Second World War. This led to the development by Reason of an instrument in which a stylus was moved across the surface and the profile recorded electronically. This was called the Talysurf and was first produced in 1941. Further development followed, and from 1947 Reason tackled the problem of measuring roundness, producing the first Talyrond machine in 1949. The technology developed for these instruments was used in the production of others such as the Talymin Comparator and the Talyvel electronic level. Reason was also associated with the development of optical projection systems to measure the profile of parts such as gear teeth, screw threads and turbine blades. He retired in 1968 but continued as a consultant to the company. He served for many years on committees of the British Standards Institution on surface metrology and was a representative of Britain at the International Standards Organization.
    [br]
    Principal Honours and Distinctions
    OBE 1967. FRS 1971. Honorary DSc University of Birmingham 1969. Honorary DSc Leicester University 1971.
    Further Reading
    D.J.Whitehouse, 1990, Biographical Memoirs of Fellows of the Royal Society 36, London, pp. 437–62 (an illustrated obituary notice listing Reason's eighty-nine British patents, published between 1930 and 1972, and his twenty-one publications, dating from 1937 to 1966).
    K.J.Hume, 1980, A History of Engineering Metrology, London, 113–21 (contains a shorter account of Reason's work).
    RTS

    Biographical history of technology > Reason, Richard Edmund

  • 5 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

См. также в других словарях:

  • Biographical Memoirs of Fellows of the Royal Society — Biographical Memoirs of Fellows of the Royal Society[1]   Former name(s) Obituary Notes of Fellows of the Royal Society …   Wikipedia

  • Royal Society — The Royal Society of London for the Improvement of Natural Knowledge, known simply as The Royal Society, is a learned society for science that was founded in 1660 [cite web |url=http://royalsociety.org/page.asp?id=1058 |title=History of the Royal …   Wikipedia

  • Royal Society — Zweck: Wissenschaft und Forschung Vorsitz: Paul Nurse Gründungsdatum …   Deutsch Wikipedia

  • The Genetical Theory of Natural Selection — is a book by R.A. Fisher. It was first published in 1930 by Clarendon. It is one of the most important books of the modern evolutionary synthesis and is commonly cited in biology books. Editions A second slightly revised edition was republished… …   Wikipedia

  • The Svedberg — The (Theodor) Svedberg (Aussprache: [ˌteː ˈsveːdbæɹʝ], * 30. August 1884 in Valbo, Gemeinde Gävle; † 26. Februar 1971 in Kopparberg) war ein schwedischer Chemiker. Svedberg begann 1904 sein Studium an der Universität Uppsala. 1905 legte er die… …   Deutsch Wikipedia

  • Inventions in the modern Islamic world — [ Abdus Salam, the 1979 Nobel Prize in Physics recipient, include the electroweak interaction, electroweak symmetry breaking, magnetic photon, neutral current, preon, W and Z bosons, supergeometry, supermanifold, superspace and superfield.] This… …   Wikipedia

  • Croonian Lecture — The Croonian Lectures are prestigious lectureships given at the invitation of the Royal Society and the Royal College of Physicians.[citation needed] Among the papers of William Croone at his death in 1684, was a plan to endow one lectureship at… …   Wikipedia

  • Actonian Prize — The Actonian Prize was established by the Royal Institution as a septennial award for the person who in the judgement of the committee of managers for the time being of the Institution, should have been the author of the best essay illustrative… …   Wikipedia

  • Chapman-Jouguet condition — The Chapman Jouguet condition holds approximately in detonation waves. It states that the detonation proceeds at a velocity at which the reacting gases just reach sonic velocity (in the frame of the lead shock) as the reaction ceases.Chapman and… …   Wikipedia

  • Chapman–Jouguet condition — The Chapman–Jouguet condition holds approximately in detonation waves in high explosives. It states that the detonation propagates at a velocity at which the reacting gases just reach sonic velocity (in the frame of the lead shock wave) as the… …   Wikipedia

  • List of Old Greshamians — The following is a list of notable Old Greshamians, former pupils of Gresham s School, Norfolk, England. Public life*James Allan British High Commissioner in Mauritius and ambassador to Mozambique Lidell, Charles Lawrence Scruton Douglas, A. B.,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»